Effectiveness of Magnetized Flow on Nanofluid Containing Gyrotactic Micro-Organisms over an Inclined Stretching Sheet with Viscous Dissipation and Constant Heat Flux

نویسندگان

چکیده

The bioconvection phenomenon, through the utilization of nanomaterials, has recently encountered significant technical and manufacturing applications. Bioconvection various applications in bio-micro-systems due to improvement it brings mixing mass transformation, which are crucial problems several micro-systems. present investigation aims explore phenomenon magneto-nanofluid flow via free convection along an inclined stretching sheet with useful characteristics viscous dissipation, constant heat flux, solutal, motile micro-organisms boundary conditions. analysis is addressed based on Buongiorno model integration Brownian motion thermophoresis diffusion effects. governing equations changed into ordinary differential by means appropriate transformation; they were solved numerically using Runge–Kutta–Fehlberg scheme shooting technique. influence all sundry parameters discussed for local skin friction coefficient, Nusselt number, Sherwood density number.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of thermal radiation and viscous dissipation on hydromagnetic unsteady flow over an exponentially inclined preamble stretching sheet

The present numerical attempt deals the sway to transfer of heat and mass characteristics on the time-dependent hydromagnetic boundary layer flow of a viscous fluid over an exponentially inclined preamble stretching. Furthermore, the role of viscous heating, thermal radiation, uneven energy gain or loss, velocity slip, thermal slip and solutal slips are depicted. The prevailing time-dependent P...

متن کامل

Heat and mass transfer of nanofluid over a linear stretching surface with Viscous dissipation effect

Boundary Layer Flow past a stretching surface with constant wall temperature, of a nanofluid is studied for heat transfer characteristics. The system of partial differential equations describing such a flow is subjected to similarity transformations gives rise to a boundary value problem involving a system of ordinary differential equations. This system is solved by a shooting method. Effect of...

متن کامل

Heat Transfer on Mhd Viscous Flow over a Stretching Sheet with Prescribed Heat Flux

A steady three-dimensional Magnetohydrodynamic (MHD) boundary layer viscous flow and heat transfer due to a permeable stretching sheet with prescribed surface heat flux is studied in presence of a uniform applied magnetic field transverse to the flow. Using the implicit finite-difference scheme, known as the Keller-box method, the nonlinear ordinary differential equations are solved. The veloci...

متن کامل

Radiation effect on viscous flow of a nanofluid and heat transfer over a nonlinearly stretching sheet

In this work, we study the flow and heat transfer characteristics of a viscous nanofluid over a nonlinearly stretching sheet in the presence of thermal radiation, included in the energy equation, and variable wall temperature. A similarity transformation was used to transform the governing partial differential equations to a system of nonlinear ordinary differential equations. An efficient nume...

متن کامل

Unsteady Hydromagnetic Flow of Eyring-Powell Nanofluid over an Inclined Permeable Stretching Sheet with Joule Heating and Thermal Radiation

The present analysis deals with an unsteady magnetohydrodynamic flow of Eyring-Powell nanofluid over an inclined permeable stretching sheet. Effects of thermal radiation, Joule heating, and chemical reaction are considered. The effects of Brownian motion and thermophoresis on the flow over the permeable stretching sheet are discussed. Using Runge-Kutta fourth-order along with shooting technique...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fluids

سال: 2021

ISSN: ['2311-5521']

DOI: https://doi.org/10.3390/fluids6070253